Derivation Modules of Orthogonal Duals of Hyperplane Arrangements
نویسنده
چکیده
Let A be an n × d matrix having full rank n. An orthogonal dual A of A is a (d − n) × d matrix of rank (d − n) such that every row of A is orthogonal (under the usual dot product) to every row of A. We define the orthogonal dual for arrangements by identifying an essential (central) arrangement of d hyperplanes in n-dimensional space with the n × d matrix of coefficients of the homogeneous linear forms for which the hyperplanes are kernels. When n ≥ 5, we show that if the matroid (or the lattice of intersection) of an n-dimensional essential arrangement A contains a modular copoint whose complement spans, then the derivation module of the orthogonally dual arrangement A has projective dimension at least ⌈n(n + 2)/4⌉ − 3.
منابع مشابه
Duals of Some Constructed $*$-Frames by Equivalent $*$-Frames
Hilbert frames theory have been extended to frames in Hilbert $C^*$-modules. The paper introduces equivalent $*$-frames and presents ordinary duals of a constructed $*$-frame by an adjointable and invertible operator. Also, some necessary and sufficient conditions are studied such that $*$-frames and ordinary duals or operator duals of another $*$-frames are equivalent under these conditions. W...
متن کاملDerivation radical subspace arrangements
In this note we study modules of derivations on collections of linear subspaces in a finite dimensional vector space. The central aim is to generalize the notion of freeness from hyperplane arrangements to subspace arrangements. We call this generalization ‘derivation radical’. We classify all coordinate subspace arrangements that are derivation radical and show that certain subspace arrangemen...
متن کاملApproximate Duals of $g$-frames and Fusion Frames in Hilbert $C^ast-$modules
In this paper, we study approximate duals of $g$-frames and fusion frames in Hilbert $C^ast-$modules. We get some relations between approximate duals of $g$-frames and biorthogonal Bessel sequences, and using these relations, some results for approximate duals of modular Riesz bases and fusion frames are obtained. Moreover, we generalize the concept of $Q-$approximate duality of $g$-frames and ...
متن کاملBases for modules of differential operators of order 2 on the classical Coxeter arrangements
It is well-known that the derivation modules of Coxeter arrangements are free. Holm began to study the freeness of modules of differential operators on hyperplane arrangements. In this paper, we study the cases of the Coxter arrangements of type A, B and D. In this case, we prove that the modules of differential operators of order 2 are free. We give examples of all the 3-dimensional classical ...
متن کاملSimilar generalized frames
Generalized frames are an extension of frames in Hilbert spaces and Hilbert $C^*$-modules. In this paper, the concept ''Similar" for modular $g$-frames is introduced and all of operator duals (ordinary duals) of similar $g$-frames with respect to each other are characterized. Also, an operator dual of a given $g$-frame is studied where $g$-frame is constructed by a primary $g$-frame and an or...
متن کامل